翻訳と辞書
Words near each other
・ Table tennis at the 2002 Asian Games – Mixed doubles
・ Table tennis at the 2002 Asian Games – Women's doubles
・ Table tennis at the 2002 Asian Games – Women's singles
・ Table tennis at the 2002 Asian Games – Women's team
・ Table tennis at the 2002 Central American and Caribbean Games
・ Table tennis at the 2003 Pan American Games
・ Table tennis at the 2004 Summer Olympics
・ Table tennis at the 2004 Summer Olympics – Men's doubles
・ Table tennis at the 2004 Summer Olympics – Men's singles
・ Table tennis at the 2004 Summer Olympics – Women's doubles
・ Table of Opposites
・ Table of organization and equipment
・ Table of organization and equipment for an ADC company
・ Table of permselectivity for different substances
・ Table of political parties in Europe by pancontinental organisation
Table of polyhedron dihedral angles
・ Table of precedence for Barbados
・ Table of precedence for the Commonwealth of Australia
・ Table of precedence for the People's Republic of Bangladesh
・ Table of precedence of Negeri Sembilan
・ Table of precedence of Perak
・ Table of precedence of Sabah
・ Table of precedence of Sarawak
・ Table of prime factors
・ Table of prophets of Abrahamic religions
・ Table of Ranks
・ Table of simple cubic graphs
・ Table of spherical harmonics
・ Table of standard reduction potentials for half-reactions important in biochemistry
・ Table of stars with Bayer designations


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Table of polyhedron dihedral angles : ウィキペディア英語版
Table of polyhedron dihedral angles
The dihedral angles for the edge-transitive polyhedra are:
| (4.4.4)
| π/2
| 90°
|- align="center"
|
| align="left" | Octahedron
|
| (3.3.3.3)
| π − arccos(1/3)
| 109.47°
|- align="center"
|
| align="left" | Dodecahedron
|
| (5.5.5)
| π − arctan(2)
| 116.56°
|- align="center"
|
| align="left" | Icosahedron
|
| (3.3.3.3.3)
| π − arccos(√5/3)
| 138.19°
|-align="center"
! colspan=6 | Kepler-Poinsot solids (regular nonconvex)
|- align="center"
|
| align="left" |Small stellated dodecahedron||
| (5/2.5/2.5/2.5/2.5/2)
| π − arctan(2)
| 116.56°
|- align="center"
|
| align="left" |Great dodecahedron||
| (5.5.5.5.5)/2
| arctan(2)
| 63.435°
|- align="center"
|
| align="left" |Great stellated dodecahedron||
| (5/2.5/2.5/2)
| arctan(2)
| 63.435°
|- align="center"
|
| align="left" |Great icosahedron||
| (3.3.3.3.3)/2
| arcsin(2/3)
| 41.810°
|- align="center"
! colspan=6 | Quasiregular polyhedra (Rectified regular)
|- align="center"
|
| align="left" | Tetratetrahedron
| r
| (3.3.3.3)
| \pi - \arccos \right)}
| 109.47°
|- align="center"
|
| align="left" | Cuboctahedron
| r
| (3.4.3.4)
| \pi - \arccos} \right)}
| 125.264°
|- align="center"
|
| align="left" | Icosidodecahedron
| r
| (3.5.3.5)
| \pi - \arccos } \right) }
| 142.623°
|- align="center"
|
| align="left" | Dodecadodecahedron
| r
| (5.5/2.5.5/2)
| π − arctan(2)
| 116.56°
|- align="center"
|
| align="left" | Great icosidodecahedron
| r
| (3.5/2.3.5/2)
|
|
|- align="center"
! colspan=6 | Ditrigonal polyhedra
|- align="center"
|
| align="left" | Small ditrigonal icosidodecahedron
| a
| (3.5/2.3.5/2.3.5/2)
|
|
|- align="center"
|
| align="left" | Ditrigonal dodecadodecahedron
| b
| (5.5/3.5.5/3.5.5/3)
|
|
|- align="center"
|
| align="left" | Great ditrigonal icosidodecahedron
| c
| (3.5.3.5.3.5)/2
|
|
|- align="center"
! colspan=6 | Hemipolyhedra
|- align="center"
|
| align="left" | Tetrahemihexahedron
| o
| (3.4.3/2.4)
|
| 54.73°
|- align="center"
|
| align="left" | Cubohemioctahedron
| o
| (4.6.4/3.6)
|
| 54.73°
|- align="center"
|
| align="left" | Octahemioctahedron
| o
| (3.6.3/2.6)
|
| 70.53°
|- align="center"
|
| align="left" | Small dodecahemidodecahedron
| o
| (5.10.5/4.10)
|
| 26.063°
|- align="center"
|
| align="left" | Small icosihemidodecahedron
| o
| (3.10.3/2.10)
|
| 116.56°
|- align="center"
|
| align="left" | Great dodecahemicosahedron
| o
| (5.6.5/4.6)
|
|
|- align="center"
|
| align="left" | Small dodecahemicosahedron
| o
| (5/2.6.5/3.6)
|
|
|- align="center"
|
| align="left" | Great icosihemidodecahedron
| o
| (3.10/3.3/2.10/3)
|
|
|- align="center"
|
| align="left" | Great dodecahemidodecahedron
| o
| (5/2.10/3.5/3.10/3)
|
|
|- align="center"
! colspan=6 | Quasiregular dual solids
|- align="center"
|
| align="left" | Rhombic hexahedron
(Dual of tetratetrahedron)
| -
| V(3.3.3.3)
| π − π/2
| 90°
|- align="center"
|
| align="left" | Rhombic dodecahedron
(Dual of cuboctahedron)
| -
| V(3.4.3.4)
| π − π/3
| 120°
|- align="center"
|
| align="left" | Rhombic triacontahedron
(Dual of icosidodecahedron)
| -
| V(3.5.3.5)
| π − π/5
| 144°
|- align="center"
|
| align="left" | Medial rhombic triacontahedron
(Dual of dodecadodecahedron)
| -
| V(5.5/2.5.5/2)
| π − π/3
| 120°
|- align="center"
|
| align="left" | Great rhombic triacontahedron
(Dual of great icosidodecahedron)
| -
| V(3.5/2.3.5/2)
| π − π/(5/2)
| 72°
|- align="center"
! colspan=6 | Duals of the ditrigonal polyhedra
|- align="center"
|
| align="left" | Small triambic icosahedron
(Dual of small ditrigonal icosidodecahedron)
| -
| V(3.5/2.3.5/2.3.5/2)
|
|
|- align="center"
|
| align="left" | Medial triambic icosahedron
(Dual of ditrigonal dodecadodecahedron)
| -
| V(5.5/3.5.5/3.5.5/3)
|
|
|- align="center"
|
| align="left" | Great triambic icosahedron
(Dual of great ditrigonal icosidodecahedron)
| -
| V(3.5.3.5.3.5)/2
|
|
|- align="center"
! colspan=6 | Duals of the hemipolyhedra
|- align="center"
|
| align="left" | Tetrahemihexacron
(Dual of tetrahemihexahedron)
| -
| V(3.4.3/2.4)
| π − π/2
| 90°
|- align="center"
|
| align="left" | Hexahemioctacron
(Dual of cubohemioctahedron)
| -
| V(4.6.4/3.6)
| π − π/3
| 120°
|- align="center"
|
| align="left" | Octahemioctacron
(Dual of octahemioctahedron)
| -
| V(3.6.3/2.6)
| π − π/3
| 120°
|- align="center"
|
| align="left" | Small dodecahemidodecacron
(Dual of small dodecahemidodecacron)
| -
| V(5.10.5/4.10)
| π − π/5
| 144°
|- align="center"
|
| align="left" | Small icosihemidodecacron
(Dual of small icosihemidodecacron)
| -
| V(3.10.3/2.10)
| π − π/5
| 144°
|- align="center"
|
| align="left" | Great dodecahemicosacron
(Dual of great dodecahemicosahedron)
| -
| V(5.6.5/4.6)
| π − π/3
| 120°
|- align="center"
|
| align="left" | Small dodecahemicosacron
(Dual of small dodecahemicosahedron)
| -
| V(5/2.6.5/3.6)
| π − π/3
| 120°
|- align="center"
|
| align="left" | Great icosihemidodecacron
(Dual of great icosihemidodecacron)
| -
| V(3.10/3.3/2.10/3)
| π − π/(5/2)
| 72°
|- align="center"
|
| align="left" | Great dodecahemidodecacron
(Dual of great dodecahemidodecacron)
| -
| V(5/2.10/3.5/3.10/3)
| π − π/(5/2)
| 72°
|}
== References ==

* Coxeter, ''Regular Polytopes'' (1963), Macmillan Company
*
* ''Regular Polytopes'', (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (Table I: Regular Polytopes, (i) The nine regular polyhedra in ordinary space)
* (Section 3-7 to 3-9)
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Table of polyhedron dihedral angles」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.